The Second Battle of the Atlantic was the longest continuous military campaign of World War II, running from 1939 right through to the defeat of Nazi Germany in 1945, and was at its height from mid-1940 through to about the end of 1943. The naval battle pitted the German Navy against convoys from North America to the United Kingdom, protected mainly by the British and Canadian navies and air forces, which were later aided by United States forces. The Germans were assisted by a small number of Italian submarines after the country joined the Axis Powers. Although many ships were sunk, the Allies gradually gained the upper hand.

Strategic objectives[]

As an island nation with an overseas empire, the United Kingdom was highly dependent on sea-going trade. Britain required more than a million tons of imported food and material per week in order to be able to survive and fight on against Germany. In essence, the Battle of the Atlantic was the Allied struggle to maintain, and the Axis struggle to cut off in a tonnage war, the shipping that enabled Britain to survive.

The air threat[]

Following some early experience in support of the war at sea during the Norwegian Campaign, the Luftwaffe contributed small amounts of forces to the Battle of the Atlantic from 1940 to 1944. These were primarily long-range reconnaissance planes, first with Focke-Wulf 200, and later Junkers 290 maritime patrol aircraft. The initial Focke Wulf aircraft were very successful, claiming 365,000 tons of shipping in early 1941. The development of escort carriers and increased efforts by RAF Coastal Command soon made the task more dangerous and less rewarding for the German planes though. From 1943 onwards, He 177 bombers with guided missiles were sometimes used for attacks on convoys, claiming minor successes.

The Luftwaffe also contributed fighter cover for U-boats venturing out into and returning from the Atlantic, and for returning blockade runners.

The mining threat[]

The U-boat fleet, which was to dominate so much of the battle of the Atlantic, was very small at the beginning of the war and much of the early action by German forces involved mining convoy routes and ports around Britain. The German submarines also operated in the Mediterranean Sea and its coasts, in the Caribbean Sea, and in U.S. coasts.

Initially, contact mines were employed, which meant that a ship had to physically strike one of the mines in order to detonate it. Contact mines are usually suspended on the end of a cable just below the surface of the water and laid by ship or submarine. By the beginning of World War II most nations had also developed mines that could be dropped from aircraft, making it possible to lay them in enemy harbours (although they simply floated on the surface). The use of dredging and nets was effective against this type of mine, but nonetheless this process was time-consuming and involved the closing of harbors while it was completed.

Into this arena came a new mine threat. Most contact mines leave holes in ship's hulls, but some ships survived mine blasts, limping back to port with buckled plates, popped rivets, and broken backs. This appeared to be due to a new type of magnetic mine, detonating at a distance from the ships, and doing the damage with the shockwave of the explosion. Often ships that had successfully run the gauntlet of the Atlantic crossing were destroyed entering freshly mineswept harbors on Britain's coast. More shipping was now being lost than could be replaced, and Churchill ordered that the intact recovery of one of these new mines was to be given highest priority.

Then the British experienced a stroke of luck in November 1939. A German mine was dropped from an aircraft laying mines onto the mud flats of the Thames estuary, well above the waterline. As if this was not sufficiently good fortune, the land happened to belong to the army, and a base, including men and workshops, was close at hand. Experts were quickly dispatched from London to investigate the mine. They had some idea by this time that the mines used magnetic sensors, so they had everyone remove all metal, including their buttons, and made new tools out of non-magnetic brass. They then disarmed the mine and rushed it to labs at Portsmouth, where scientists discovered a new type of arming mechanism inside.

The arming mechanism had a sensitivity level that could be set, and the units of the scale were in milligauss. Gauss is a measurement for the strength of a magnetic field, demonstrating how it went off before coming into contact with the ship. Using the detector from the mine, they were able to study the effect of a ship passing near it. A ship or any large ferrous object passing through the earth's magnetic field will concentrate the field at that point. The detector from the mine sensitive to this effect, was designed to go off at the mid-point of the ship passing overhead.

From this crucial data, methods were developed to clear the mines. Early methods included the use of large electromagnets dragged behind ships, or on the undersides of low-flying aircraft (a number of older bombers like the Vickers Wellington were used for this purpose). However both of these methods had the disadvantage of "sweeping" only a small strip at a time. A better solution was found in the form of electrical cables dragged behind ships, passing a large current through the seawater. This induced a huge magnetic field and swept the entire area between the two ships. The older methods continued to be used in smaller areas; the Suez Canal continued to be swept by aircraft, for instance.

While these methods were useful for clearing mines from local ports, they were of little or no use for enemy-controlled areas. These were typically visited by warships, and the majority of the fleet then underwent a massive degaussing process, where their hulls' had a slight "south" bias induced into them. This offset the concentration effect almost to zero.

Initially major warships and large troopships had a copper degaussing coil fitted around the perimeter of the hull, energised by the ship's electrical system whenever in suspected magnetic-mined waters, some of the first to be so-fitted being the carrier HMS Ark Royal and the RMS Queen Mary and RMS Queen Elizabeth troopships, however this was felt to be impracticable for the myriad of smaller warships and merchant vessels, not least due to the amount of copper that would be required, however, it was found that sailing a vessel over coils laid in shallow water and energised from the shore temporarily 'wiped' the ships magnetic signature sufficiently to nullify the threat. This started in late 1939, and by 1940 merchant vessels and the smaller British warships were largely immune for the few months at a time until they once again built up a field. Many of the boats that sailed to Dunkirk were degaussed in a marathon four-day effort by hard-pressed degaussing stations.

The Germans had also developed a pressure-activated mine and planned to deploy it as well, but they saved it for later use when it became clear the British had beaten the magnetic system.

The 'Happy Time'[]

Prior to the war the admiral of the U-boats, Karl Dönitz, had advocated a system known as the Rudel or wolf pack, in which teams of U-boats would gang up on convoys and simply overwhelm the defending warships accompanying them. He also developed a theory of destroying an enemy fleet, not by attacking their ships directly, but by cutting off their supplies so they could not be used — an economic war. In order to be effective he calculated that he would need 300 of the latest Atlantic Boats (the Type VII), which would create enough havoc among British shipping that she would be knocked out of the war.

However the U-boat was still considered by much of the naval world as a poor-man's weapon, and the deliberate hunting of merchant ships used only by cowards. This was true in the Kriegsmarine as well, and the Grand Admiral, Erich Raeder, successfully lobbied for monies to be spent on large capital ships instead. This was a dubious expenditure considering the numerically superior British fleet facing them, and even Raeder himself suggested they would be wiped out very quickly in the event of war.

Thus the U-boat Service began the war consisting mainly of short-range Type II only useful primarily for mine-laying and operations in and around the British coastal areas. They had neither the range nor the supplies to operate far from land, and as a result the RAF was able to counter the U-boats to some degree with standing patrols by Coastal Command aircraft. Early operations of aircraft against the U-boats were somewhat comical, but the crews gained experience quickly and the Western Approaches were soon cleared of the threat.

Meanwhile Royal Navy destroyers were being equipped with increasingly powerful sonar systems (known to the RN as ASDIC) and were able to block the exits into the North Sea and the Channel with some success. ASDIC was unable to find U-boats on the surface where they spent the vast majority of their time, but with aircraft cover forcing them underwater, running to the Atlantic could be a somewhat dangerous operation.

Atlantic operations[]

However with the fall of France the Kriegsmarine gained direct access to the Atlantic ocean. Huge fortified concrete ports for the U-boats were built, which resisted any successful bombing throughout the course of the war. Most of the U-boat fleet was moved to these bases where they also had excellent air cover, making it much harder for both the RAF and RN to do anything about it.

In addition, the new Type VIIc design started arriving in large numbers in 1940. The VII was much more powerful than the Type II it replaced, including both a rapid-fire 88 mm deck gun and four forward torpedo tubes. It also was much larger than the Type II, and could spend long times at sea, well away from land. Earlier VIIa and VIIb's had already reached service in small numbers, but the c was put into full production and eventually 585 of them would be delivered.

The Type VII dramatically increased pressure on the British. The boats would operate long distances from shore, well out of the range of land-based aircraft. The only counter was the Royal Navy's ships, but these elements were hard-pressed to cover the vast region of the North Atlantic.

The RN had yet to institute the policy of convoys, primarily because all boats cruise at the speed of the slowest. The few Type VII's already delivered were able to escape into the Atlantic at night and then wait for ships to pass. They would then run on the surface and hunt down the scattered cargo ships with their guns. The early operations were spectacularly successful, and the U-boat crews became heroes to the people in the Fatherland. The crews referred to this as the 'happy time'.

The RN quickly introduced a convoy system which allowed them to concentrate escorting warships especially corvettes, warships tailored for anti-submarine work, near the one place the U-boats were likely to engage the convoys. This had some effect, but not what they had hoped. The speed of these newer boats compared to their WWI counterparts meant that they could often run to the front of the convoy, wait for the convoy to sail into torpedo range underwater, fire a salvo, and leave long before the escorts could get to them.

However the German effort also had weaknesses. Torpedoes continued to fail with an alarming rate, and the director in charge of their development continued to claim it was the crews' fault. Eventually this came to a head when one U-boat ace shot three perfect hits into the side of the HMS Ark Royal, only to watch all three explode harmlessly far away from the ship's side. Scenes like this continued until the matter was finally taken to hand in April 1940, although it wasn't until early 1942 that the problems were completely addressed.

Another issue was finding the convoys in a very large ocean. The Germans had nowhere near the number of patrol boats or tracking stations needed to make accurate fixes from shore. Instead they had a handful of very long range aircraft (namely the Fw 200 Condor) used as spotters. To this they added codebreaking efforts, which eventually succeeded in breaking the British Merchant Marine code book, allowing them to time the convoys as they left North America from Halifax, Sydney, Nova Scotia, and St. John's, Newfoundland.

But the primary source of tracking was the U-boats themselves. They were strung out in lines across the North Atlantic waiting for a passing convoy. Once spotted, the position would be radioed to Kriegsmarine headquarters, where a furious effort would begin to vector other U-boats onto the attack. As the numbers of U-boats and the proficiency of the headquarters grew, they were eventually able to consistently form the wolfpacks that Dönitz wanted.

At the same time, a number of technical developments looked set to aid the Allies. Firstly, new depth charges were developed that fired in front of the destroyers rather than simply dropping them over the side as the destroyer passed over. The sonar contact was lost directly underneath the boat, and the U-boats often used this to escape. In addition, depth charges were fired in patterns, to 'box' the enemy in with explosions. The shockwaves would then destroy the U-boat by crushing it in the middle of these explosions. A device to supplement this was the Hedgehog, the name deriving from the firing spindles. This fired twenty-four contact-fused bombs in a circular or elliptical area about 100 feet (30m) in diameter at a fixed point about 250 yards directly ahead of the attacking ship.

Aircraft ranges were also improving all the time, but the Atlantic was far too large to be covered completely at the time. A stop-gap measure was instituted by fitting ramps to the front of some of the cargo ships known as Catapult Armed Merchantmen, armed with a lone expendable fighter aircraft. When a German spotter plane approached, the fighter was fired off the end of the ramp with a large rocket to shoot down or drive off the German aircraft, the pilot ditching in the water and being picked up by one of the escort ships if land was too far away.

One of the most significant developments was improved direction-finding radio equipment. A new design enabled the operator to instantly see the direction of a broadcast. Since U-boats had to surface to radio, they gave their positions away as soon as they radioed in the position of a convoy. A destroyer could then engage the U-boat, preventing a coherent attack on the convoy.

Finally, the rigorous training of new naval personnel by such officers as Gilbert Stephenson has also been cited as a factor in providing crews who were well prepared for the demands of the battle.

Through dogged effort, the Royal Navy slowly gained the upper hand through until the end of 1941. Although achieving limited damage to the U-boats themselves, they were managing to keep them from the convoys to an increasing degree. Shipping losses were high, but manageable.

Operation Drumbeat, the 'Second Happy Time'[]

The U-boat crews called this the second happy time. This began when the US joined the war, by declaring war against Japan after the surprise attack at Pearl Harbor. Germany then declared war on the US and promptly attacked US shipping.

Dönitz had only 12 boats of the Type IX class that were able to make the long trip to the US East Coast, and half of them were removed by Hitler's direct command to counter British forces. One of those was under repair, leaving only five ships to set out for the US on Operation Drumbeat (Paukenschlag). What followed is considered by many to be one of the most victorious naval campaigns since the Battle of Trafalgar.

The US, having no direct experience of modern naval war on its own shores, did not employ shore-side black-outs. The U-boats simply stood off the shore of the eastern sea-board and picked off ships as they were silhouetted against the lights of the cities. Worse, the U.S. Commander-in-Chief of the Atlantic Fleet, Admiral Ernest King, rejected the RN's calls for a convoy system out of hand. King has been criticised for this decision, but his defenders argue that the United States destroyer fleet was limited and King believed that it far more important to protect Allied troop transports than shipping. This decision effectively gave the U-Boats a free hand.

The first boats started shooting on January 13th, 1942, and by the time they left for France on February 6th they had sunk 156,939 tonnes of shipping without loss. After six months of this the statistics were grim. The first batch of Type IX's had been replaced by Type VII's and IX's refueling at sea from modified Type XIV Milk Cows (themselves modified Type IX's) and had sunk 397 ships totalling over 2 million tons. At the same time, not a single troop transport was lost. In 1943, the United States launched over 11 million tons of merchant shipping, that number would decline in the latter war years, as priorities moved elsewhere.

In May, King (by now promoted to Commander-in-Chief U. S. Fleet and the Chief of Naval Operations) instituted a convoy system. This quickly led to the loss of seven U-boats. But the US did not have enough ships to cover all the holes, and the U-boats continued to operate freely in the Caribbean and the Gulf of Mexico (where they effectively closed several US ports) until July.

Operation Drumbeat did have one other effect. It was so successful that Dönitz's policy of economic war was seen even by Hitler to be the only effective use of the U-boat, and he was given complete command to use them as he saw fit. Meanwhile, Dönitz's commander Raeder was being demoted as a result of a disastrous operation in the Barents Sea in which several German cruisers had been beaten off by a small number of RN destroyers. Dönitz was eventually made Grand Admiral of the fleet, and all priorities turned to the construction of U-boats.

The Leigh Light[]

The Introduction by the British of the Leigh Light in June 1942 was a significant factor in the North Atlantic struggle. It was a powerful searchlight that was used in conjunction with airborne radar to allow allied aircraft to accurately target U-boats recharging batteries on the surface at night, forcing German submarine skippers to switch to daytime recharges. A drop in allied shipping losses from 600,000 to 200,000 tonnes per month was attributed to this simple device.

Turning point[]

With the US quickly arranging convoys, losses to the U-boats quickly dropped and Dönitz realized his boats were better used elsewhere. On July 19, 1942 he ordered the last U-boats withdrawn from the United States Atlantic coast and by the end of July 1942 he shifted his attention back to the North Atlantic, where the battle would enter its final terrible phase.

By this point there were more than enough U-boats spread across the Atlantic to allow several wolfpacks to attack the same convoy. In most cases 10 to 15 boats would attack in one or two waves, following the convoys by day and attacking at night. Losses quickly started mount again, and in October alone 56 ships of over 258,000 tonnes were sunk in the limited area between Greenland and Ireland that was still free of the ever-increasing Allied air patrols.

Operations slowed over the winter, but in the spring of 1943 they returned again with the same ferocity. In March another 260,000 tonnes were sunk, and the supply situation in England was such that there was talk of being unable to continue the war effort. Supplies of fuel in particular were critical.

It appeared that Dönitz was winning the war. And yet March was the end of the battle. In April, losses of U-boats shot up while their kills of ships fell dramatically. By May the wolfpack was no longer. The Battle of the Atlantic was won by the Allies in two months.

There was no single reason for this, but a number that took effect at almost the same time. The result was a huge blow from which Dönitz was unable to recover. The four major changes were largely technological.

Aircraft coverage[]

Among these was the introduction of an effective sea-scanning centimetric radar small enough to be carried on the patrol aircraft armed with airborne depth charges, turning anti-submarine aircraft into efficient hunter-killers. Although they had long been able to detect a surfaced boat from many miles, the aircraft themselves had limited range. This changed with the improved numbers of the very long range Shorts Sunderland and B-24 Liberator aircraft, which could cover large areas of the ocean.

But land-based aircraft, even the very long range types, couldn't cover it all. The remaining holes were closed by the introduction of the Merchant aircraft carrier or MAC ship and later the escort carrier. Flying Grumman Wildcats primarily, they formed into the same convoys and provided the much needed air cover and patrols all the way across the Atlantic.

Hunter-Killer groups[]

In addition the British introduced the new River-class frigates, built with a single purpose in mind — killing U-boats. They were much faster than previous frigates, better armed, and had a better radar system and ASDIC. Formed into hunter-killer groups (one of the major tactical reasons for the victory) by the new commander of the Western Approaches, they would sail far from the convoys in small groups, making it almost impossible for the wolfpacks to form up under their constant sneak attacks.

The Americans introduced similar ships known as Destroyer escorts. While fleet destroyers were still more effective for anti-submarine warfare, the destroyer escort and frigate types outweighed this by being able to be built considerably faster and at significantly lower cost. Destroyer escorts were also considerably more seaworthy than Corvettes.


Improvements to Huff-Duff (High-Frequency Direction-Finder radio-triangulation equipment used as part of ELINT) meant that a U-boat's location could be found even if the messages they were sending could not be read, as happened when the Germans introduced changes in their encryption systems. Improvements to ASDIC (SONAR), coupled with Hedgehog depth charges, improved the likelihood of a surface attack sinking a U-boat.

Enigma Cipher[]

A major factor in the victory was the cracking of the Naval Enigma machine cipher, combined with German tactics that were formed with certainty that their cipher could not be broken. The Royal Navy knew where the U-boat packs were forming and sent in hunter-killer groups to destroy them. In this they were aided by the German Naval Headquarters' insistence on directing U-boat operations in detail via Enigma-encrypted radio messages.

The efforts were so successful that it is a wonder the Kriegsmarine didn't realise that this was happening. It appears that they seemed to have some idea, but repeated questions from Dönitz to German intelligence services always resulted in claims that there was no way the cipher could be broken. One would think that simply looking at the statistics would be enough – U-boat losses dropped every time a new version of the cipher was introduced – but time lags, luck, pigheadedness, and astounding efforts on the British part kept this from ever becoming clear.

Last gasps[]

In the next months the vast majority of the U-boat fleet would be sunk, typically with all hands.

With the battle won, supplies started to pour into England for the eventual invasion of France. This was clear even to the Germans, who became desperate to restart the battle.

Several attempts were made to salvage the Type VII force. Notable among these attempts were the fitting of massively improved anti-aircraft batteries, radar detectors, and finally the addition of the Schnorchel (snorkel) device to allow them to run underwater off their diesel engines to avoid radar. None of these were truly effective however, and by 1943 Allied air power was so strong that the U-boats were being attacked right in the Bay of Biscay as they left port.


The last, and most impressive, attempt to re-open the battle is the stuff of legend. Since even before the war the rocket designer Hellmuth Walter had been advocating the use of hydrogen peroxide (known as Perhydrol) as a fuel. His engines were to become famous for their use in rocket powered aircraft — notably the Me 163 Komet — but most of his early efforts were spent on systems for submarine propulsion.

In these cases the hydrogen peroxide was reduced chemically and the resulting gases used to spin a turbine at about 20,000rpm, which was then geared to a propeller. This allowed the submarine to run underwater at all times, as there was no need for air to run the engines. However the system also used up tremendous amounts of fuel, and any boat based on the design would either have to be absolutely huge, or have terribly limited range.

Thus the system saw only limited development even though a prototype was running in 1940. But when problems with the existing U-Boat designs became evident in 1942, the work was stepped up. Eventually two engineers came up with a simple solution to the problem.

Instead of running the submarine 100% on the perhydrol, they used it strictly for bursts of speed when needed. Most of the operations would then be carried out as with a normal boat, using a diesel engine to charge batteries. However while a conventional design would use the diesel as the primary engine and the batteries for short periods of underwater power, in this case the boat would run almost all the time on batteries in a low-speed cruise, turning on the perhydrol during attacks. The diesel was now dedicated entirely to charging the batteries, which it needed only three hours to do.

The perhydrol design suffered from several design flaws which were not fixed before the end of the war. As an intermediate solution, the perhydrol propulsion system was dropped in favour of a conventional diesel/electric solution, but retaining the streamlined hull-shape. The battery capacity was increased significantly along with fuel stores, and the boat was designed to operate underwater for long periods.

The result was the "Elektroboot" series, the Type XXI U-boat and a short range Type XXIII U-boat, finalized in January 1943 but production only commencing in 1944-1945. When underwater the Type XXI managed to run at 17 knots, faster than a Type VII running full out on the surface and almost as fast as the ships attacking her. After the war, tests carried out by the US Navy on two captured Type XXIs showed they could outrun some ASW ships by going in the direction of heavy seas. (Impressed, the US Navy's first atomic-powered submarine, USS Nautilus, used a modified Type XXI hull shape.) For most of the trip it ran silent underwater on batteries, surfacing only at night, and then only to Schnorchel depth. Weapons were likewise upgraded, with automated systems allowing the torpedo tubes to be reloaded in less than 1/4 the time, firing homing torpedoes that would attack on their own. Even the interior was improved: it was much larger and fitted with everything from showers to a meat refrigerator for long patrols.

The design was to be produced in two versions, primarily the Type XXI, and smaller numbers of the smaller Type XXIII. Both were much larger and more difficult to build than the existing designs, the Type XXI taking some 18 months. Mass production of the new type didn't really get started until 1944 and subsequently only one combat patrol was carried out by a Type XXI before the war ended, making no contact with the enemy. A number of boats were commissioned into allied navies after the war for research purposes, and one into the Bundesmarine of post-war Germany.


The Germans undoubtedly failed to strangle the flow of strategic supplies to Britain and this ultimately led to the Normandy landings.

Winning the battle was however achieved with huge losses; between 1939 and 1945, 3,500 Allied ships were sunk (gross tonnage 14.5 million) at a cost of 783 German U-boats.

Allies Germans
30,248 merchant sailors 28,000 sailors
3,500 merchant vessels 783 submarines sunk
175 warships  

See also[]

  • Timeline of the Second Battle of the Atlantic
  • British military history of World War II
  • Arctic Convoys of World War II
  • HMS Scarborough an account of a British antisubmarine sloop serving as escort during the Massacre of Convoy SC 7 in October, 1940
  • Frederick John Walker - noted Royal Navy anti-submarine warfare commander
  • Denys Rayner - RNVR officer who won a DSC & bar over 5 years fighting in the second Battle of the Atlantic
  • For the First World War Battle of the Atlantic, see First Battle of the Atlantic
  • The Norwegian Shipping and Trade Mission - Nortraship
  • Das Boot - often considered one of the most realistic and best WWII submarine movies ever made
  • Silent Hunter III - Computer simulation of the Battle of the Atlantic

Sources & references[]

Official histories[]

  • Morison, S.E. The Two Ocean War’’
  • Roskill, S.W. The War at Sea. Four volumes. (London: HMSO 1954-61).
  • Schull, Joseph. The Far Distant Ships


  • Cremer, Peter. U-333"
  • Dönitz, Karl. Ten Years And Twenty Days
  • Gretton, Peter. Convoy Escort Commander (London). Autobiography of a former escort group commander.
  • Macintyre, Donald. U-boat Killer (London). Autobiography of another former escort group commander.
  • Rayner, Denys, Escort: The Battle of the Atlantic (London: William Kimber 1955).
  • Robertson, Terence. The Golden Horseshoe (London). Biography of the top German U-boat ace, Otto Kretschmer.

Other works[]

  • Blair, Clay. Hitler’s U-boat War. Two volumes. Comprehensive history of the campaign.
  • Macintyre, Donald. The Battle of the Atlantic (London 1961). Excellent single volume history by one of the British Escort Group commanders.
  • Rohwer, Dr. Jürgen. The Critical Convoy Battles of March 1943 (London: Ian Allan 1977). ISBN 0711007497. A thorough and lucid analysis of the defeat of the U-boats.
  • Williams, Andrew The Battle of the Atlantic: Hitler's Gray Wolves of the Sea and the Allies' Desperate Struggle to Defeat Them.

External links[]

World War II
Participants Theatres Main events Specific articles

The Allies
Flag of the United Kingdom.svg United Kingdom
Flag of the Soviet Union.svg Soviet Union
US flag 48 stars.svg United States
Flag of the Republic of China.svg Republic of China
Flag of Poland.svg Poland
Flag of Free France 1940-1944.svg Free France
Flag of the Netherlands.svg Netherlands
Flag of Belgium.svg Belgium
Canadian Red Ensign 1921.svg Canada
Flag of Norway.svg Norway
Flag of Greece (1828-1978).svg Greece
Flag of SFR Yugoslavia.svg Yugoslavia
Flag of the Czech Republic.svg Czechoslovakia
Imperial-India-Blue-Ensign.svg India
Flag of Australia.svg Australia
Flag of El Salvador.svg El Salvador
Flag of New Zealand.svg New Zealand
Flag of South Africa 1928-1994.svg South Africa
Flag of Egypt 1922.svg Egypt
Flag of the Philippines.svg Philippines
Flag of Brazil.svg Brazil


The Axis
Flag of Germany 1933.svg Germany
Flag of Japan - variant.svg Japan
Kingdom of Italy Italy
Flag of Vichy France.gif Vichy France
Flag of Hungary 1940.svg Hungary
Flag of Bulgaria (1878-1944).svg Bulgaria
Rumania.gif Romania
Flag of Finland.svg Finland
Flag of Croatia Ustasa.svg Croatia
Slovakia WW2 flag.svg Slovakia
Flag of Thailand.svg Thailand


in Europe
in Asia

Main theatres
Eastern Europe
Middle East
Asia and the Pacific

General timeline

Invasion of Poland
Winter War

Invasion of Denmark/Norway
Battle of France
Battle of Britain

Invasion of the Soviet Union
Battle of Moscow
Attack on Pearl Harbor

Battle of Midway
Battle of Stalingrad
Second Battle of El Alamein

Battle of Kursk
Guadalcanal campaign
Invasion of Italy

Battle of Normandy
Operation Bagration
Battle of Leyte Gulf

Battle of Okinawa
Battle of Berlin
End in Europe
Hiroshima and Nagasaki
Surrender of Japan


Home Front
Military engagements

Civilian impact and atrocities
Nanking Massacre
Siege of Leningrad
Dutch famine of 1944
Hiroshima and Nagasaki
Strategic bombings
Comfort women
Allied war crimes
German war crimes
Japanese war crimes

Expulsion of Germans
Cold War

See also

Category:World War II
Total war
WWII in contemporary culture
Military awards of World War II
Attacks on North America
Comparative military ranks of World War II

Smallwikipedialogo.png This page uses content from Wikipedia. The original article was at Second Battle of the Atlantic. The list of authors can be seen in the page history. As with WarWiki, the text of Wikipedia is available under CC-BY-SA.